infra-rgb
Wipro 3D
Automotive

Exhaust & Inlet
Rocker Covers

They are part of a thermal management system…

Exhaust & Inlet <br /><span>Rocker Covers</span>

CATEGORY

Automotive

MATERIAL

Maraging Steel

In the highly competitive auto industry, speed to market, high strength to weight ratios, fuel efficiency are some of the few goals that constantly drive engineers and designers. New high-strength steels, along with composites and adhesives, are helping to reduce weight and increase strength in modern vehicles. Additive Manufacturing using metal alloys, has found interesting applications in tooling, jigs and fixtures, and design prototypes allowing companies to iterate rapidly and validate designs of components and subsystems. While metal Additive Manufacturing of co components at the production scale of automotive may be challenging, there are certainly emerging applications in the low volume, higher end of the industry including Formula 1 and military vehicles.

Additive Manufacturing allows optimizing the maximum strength with minimum weight and material (Topology Optimization) owing to the potential to handle complex geometries. "Monolithizing" sub-components or child parts into a monolith assembly reduces production time, improves functional performance. Typical applications of Metal AM in Automotive are weight optimized manifolds, turbine housings that form part of the current turbo powertrain ERS systems, water-wheel pumps , aluminum axle pivots. A leading name in industry has developed rocker arms and camshaft bearing caps using Metal Additive Manufacturing for its next generation truck engines.

About the Project

The Exhaust & Inlet Rocker Covers are designed as new products that need to be validated by a leading organisation in the Automotive industry. They are part of a thermal management system and are used as heat shields to protect the surrounding components and bodywork from heat damage. They also have a positive effect on performance by reducing intake temperature.

About the <span>Project</span>

AM Competencies Used

Additive Design & Engineering
Additive Design & Engineering

The first stage of realization lays grounds for topology optimization and sub-component reduction that will further strengthen the case for Metal AM th in Automotive industry.

Build Technology
Build Technology

The Covers were built with customized build parameters that resulted in a superior surface finish when compared to the output of conventional manufacturing techniques. Dimensional accuracy achieved resulted in highly reduced net shaping operations.

<span>AM Value<span> Addition

AM Value Addition

Cost of Iteration
Cost of Iteration

Owing to almost negligible set up costs, the designers had the flexibility and freedom to simulate and execute the proto design in practically a fraction of the cost and time of th conventional realization techniques. Wipro 3D with its proprietary AM methods ensured that the drawings designed to adjust for castings, were adjusted in models to a isolate conventional shrinkage and yet factor in shrinkage of the AM process.

Time-to-realize
Time-to-realize

The entire set of components was turned around in a period of one week, with the requisite mechanical properties, tolerances and finish, allowing designers to rapidly move to the design validation and improvement stage.

Download Case Study

Other Case Studies

Oil Intake  Manifold
Industrial
Oil Intake Manifold

In the highly competitive auto industry, speed to market, high strength to weight ratios, fuel efficiency are some of the few goals that constantly drive engineers and designers. New high-strength steels, along with composites and adhesives, are helping to reduce weight and increase strength in modern vehicles. Additive Manufacturing using metal alloys, has found interesting applications in tooling, jigs and fixtures, and design prototypes allowing companies to iterate rapidly and validate designs of components and subsystems. While metal Additive Manufacturing of co components at the production scale of automotive may be challenging, there are certainly emerging applications in the low volume, higher end of the industry including Formula 1 and military vehicles.

Additive Manufacturing allows optimizing the maximum strength with minimum weight and material (Topology Optimization) owing to the potential to handle complex geometries. "Monolithizing" sub-components or child parts into a monolith assembly reduces production time, improves functional performance. Typical applications of Metal AM in Automotive are weight optimized manifolds, turbine housings that form part of the current turbo powertrain ERS systems, water-wheel pumps , aluminum axle pivots. A leading name in industry has developed rocker arms and camshaft bearing caps using Metal Additive Manufacturing for its next generation truck engines.

View Case Study
Closed Impeller
space
Closed Impeller

Additive Manufacturing is reaching outer space. With increased effectiveness and maturity of space programs all over the world, leaders in the space community, are innovating, developing and iterating on multiple frontiers that lead to faster and cheaper deployment of payloads . The Wipro 3D has re-engineered, developed, and proved out flight-ready components in short “re-design to realize” lifecycles to meet such requirements.

Private space enterprises, state-run-space organizations, and other members of the space industrial ecosystems are replacing existing and conventional geometries, with designs using the freedom of design that Additive Manufacturing brings, leading to significant impact on performance. Components such as antennae, wave guides, brackets, thrusters, main oxidizer valves, combustion br chamber liners, and propellant injectors, are either in the prototyping stage or are actually flying.

View Case Study
High Pressure Compressor Stator
Aerospace
High Pressure Compressor Stator

The Aerospace industry has been at the forefront of adapting Metal Additive Manufacturing (AM) and some of the most evolved applications of metal AM can be found in the aerospace sector. Leading OEMs, tier 1 suppliers, and key ecosystem players are in the phase of developing mature capabilities in metal AM.

Typical value contribution from Metal Additive T Manufacturing comes in form of weight reduction, reduction in sub-assembled parts by creating monolithic designs, ability to realize complex designs and drastic reduction in lead time to realize components.

View Case Study
Antenna Integrated Helix Feed
Space
Antenna Integrated Helix Feed

Additive Manufacturing is reaching outer space. With increased effectiveness and maturity of space programs all over the world, leaders in the space community, are innovating, developing and iterating on multiple frontiers that lead to faster and cheaper deployment of payloads . The Wipro 3D has re-engineered, developed, and proved out flight-ready components in short “re-design to realize” lifecycles to meet such requirements.

Private space enterprises, state-run-space organizations, and other members of the space industrial ecosystems are replacing existing and conventional geometries, with designs using the freedom of design that Additive Manufacturing brings, leading to significant impact on performance. Components such as antennae, wave guides, brackets, thrusters, main oxidizer valves, combustion chamber liners, and propellant injectors, are either in the prototyping stage or are actually flying.

View Case Study